





## **SEMINARIO**

## Alonso Sepúlveda Castellanos

Universidade Federal de Uberlândia, Brasil

## Weierstrass semigroup at m+1 rational points in maximal curves which cannot be covered by the Hermitian curve

## **Abstract:**

Let  $\mathcal{X}$  be a non-singular, projective, irreducible, algebraic curve of genus  $g \geq 1$  over a finite field points  $P_1,\dots,P_m$ distinct rational  $H(P_1,\ldots,P_m)=\{(a_1,\ldots,a_m)\in\mathbb{N}_0^m:\exists f\in\mathbb{F}_q(\mathcal{X}) \text{ with } (f)_\infty=\sum_{i=1}^m a_iP_i\}$  is called the Weierstrass Semigroup in the points  $P_1,\ldots,P_m$ . This semigroup is very important to calculate the parameters of algebraic geometry codes (AG codes) over  $\mathcal{X}$ . In general, is very complicate determinate this semigroup and various efforts have been possible for certain types of curves. In 2018, joint with G. Tizziotti, we determinate the generator set  $\Gamma(P_1,\ldots,P_m)$  of  $H(P_1,\ldots,P_m)$ for curves  ${\mathcal X}$  with affine plane model f(y)=g(x), using the concept of discrepancy on two rational points P,Q over  $\mathcal{X}$ , introduced by Duursma and Park. With certain conditions, we will show how we can calculate the set  $\Gamma(P_1,\ldots,P_m)$  for two types of maximal curves which cannot covered by the Hermitian curve. The first family the curves that we present is the example given by Giulietti and Korchmáros: For  $q=n^3$  , with  $n\geq 2$  a prime power, the GK curve over  $\mathbb{F}_{q^2}$  is the curve in  $\mathbb{P}^3(\overline{\mathbb{F}}_{q^2})$  with equations  $Z^{n^2-n+1}=Y\sum_{i=0}^n(-1)^{i+1}X^{i(n-1)}$  ,  $X^n+X=Y^{n+1}$  . The second family was introduced in 2016, by Tafazolian, Teherán and Torres: For  $a,b,s\geq 1,n\geq 3$  integers such that n is odd. Let  $q=p^a$  a power of a prime, b is a divisor of a,s is a divisor of  $(q^n+1)/(q+1)$  and  $c\in \mathbb{F}_{q^2}$  with  $c^{q-1}=-1$ . We define the curve  $\mathcal{X}_{a,b,n,s}$  over  $\mathbb{F}_{q^{2n}}$  with equations  $cy^{q+1}=t(x):=\sum_{i=0}^{a/b-1}x^{p^b}$  and  $z^M=y^{q^2}-y$  where  $M=(q^n+1)/(s(q+1))$  .

El seminario tendrá lugar en Webex: Número de reunión: 326 251 668

https://profevirtual.webex.com/profevirtual/j.php?MTID=m785d0eb6c4c215a8edd0bcafedd50a1d

Para participar y recibir la contraseña de la reunión se necesita registro: <a href="https://forms.gle/sYz]W1uEdCtef4VX8">https://forms.gle/sYz]W1uEdCtef4VX8</a>

Webex (número de reunión 326 251 668) Martes 2 de Junio de 2020 (16:00)

**Organiza: GIR SINGACOM** 

Web: http://www.imuva.uva.es Correo Electrónico: imuva@uva.es

