

Renzo Cavalieri

Colorado State University

Introduction to tropical curve counting

Abstract: The main goal of this minicourse is to introduce students to enumerative applications of tropical geometry. Tropical geometry is a combinatorialization of ordinary geometry. By either doing algebraic geometry over the tropical semi-field or over fields with a valuation, one may associate piecewise linear objects to ordinary algebraic varieties. Remarkably such highly degenerate objects retain a lot of geometric information about the original algebraic varieties. For example, the notion of dimension is preserved: thus to an algebraic curve is associated a graph. Further, the genus of the curve generically is equal to the genus of the graph. In the last twenty-some years many groups of researchers have explored these connections, providing a wealth of correspondence theorems: statements on how to recover classical information from its tropical counterpart. In this minicourse we will focus in particular on a celebrated result of Mikhalkin, which shows that the count of rational tropical plane curves of degree d through 3d – 1 points in general position equals the classical count. Time permitting we will show some further applications of tropical techniques to Hurwitz theory, the count of ramified covers of Riemann Surfaces.

Aulario de la Facultad de Ciencias Lunes 23 de Mayo de 2022 (0:00)

