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Stochastic Calculus of Variations (Malliavin Calculus) consists,
in brief, in constructing and exploiting natural differentiable
structures on abstract probability spaces; in other words,
Stochastic Calculus of Variations proceeds from a merging of
differential calculus and probability theory.

Paul Malliavin and Anton Thalmaier

Stochastic Calculus of Variations in Mathematical Finance, 2006



Motivation

I To give a probabilistic proof of Hörmander’s theorem on
hypoellipticity of differential operators in square form.
(Existence of smooth densities).

I To understand better the interplay between Kolmogorov’s
equation for densities of diffusions and stochastic differential
equations.



The very basic notions in probability theory

I Probability space (Ω,G,P) (frame for random experiences).

I Random vectors X : (Ω,G)→ (Rn,B(Rn)) (shift to a
numerical model).

I Probability law of X : P ◦ X−1 (probability on (Rn,B(Rn))).

If P ◦ X−1 is absolutely continuous:

P{ω ∈ Ω : X (ω) ∈ A} =

∫
A

f (x)dx .

Having the expression and properties of f is crucial in many
computations on probabilistic models and in statistical analysis.



Densities and Integration by Parts



Notation

F : Ω→ Rn, random vector, α = (α1, . . . , αr ) ∈ {1, . . . , n}r ,
|α| =

∑r
i=1 αi ,

ϕ : Rn → R, ∂αϕ = ∂
|α|
α1,...,αrϕ.

Definition

F satisfies an integration by parts formula (IBP) of degree |α| if
there exists a random variable Hα(F ) ∈ L1(Ω) such that

E ((∂αϕ)(F )) = E (ϕ(F )Hα(F )),

for any ϕ ∈ C∞b (Rn).
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Theorem

1. Assume that the IBP formula holds for α = (1, . . . , 1). Then
the probability law of F has a density p(x) with respect to
Lebesgue measure on Rn, and

p(x) = E
(
1(x≤F )H(1,...,1)(F )

)
.

In particular, p is continuous.

2. Assume that for any multiindex α the IBP holds true. Then
p ∈ C|α|(Rn) and

∂αp(x) = (−1)|α|E
(
11(x≤F )Hα+1(F )

)
,

where α + 1 := (α1 + 1, . . . , αd + 1).



Non-rigorous argument

p(x)dx = P{F ∈ dx}, Radon-Nikodym Theorem

P{F ∈ A} = E (1A(F )).

Thus, (A = {dx} ∼ {x})

p(x) = E
(
δ0(F − x)

)
= E

(
(∂1,...,111[0,∞))(F − x)

)
= E

(
11[0,∞)(F − x)H(1,...,1)(F )

)
.



Questions
I How to check the integration-by-parts formula for

non-Gaussian random variables?

I Is there an explicit expression for Hα(X )?

Malliavin Calculus provides answers to these questions for
random variables F which are functionals of a Gaussian process
{Zw ,w ∈ I}:

F = Φ(Zw ,w ∈ I ).
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A trivial example

n = 1, F
L
= N(0, 1):

E ((ϕ′)(F )) =
1√
2π

∫
R
ϕ′(y) exp

(
−y 2

2

)
dy

=
1√
2π

∫
R
ϕ(y)y exp

(
−y 2

2

)
dy

= E (ϕ(F )F ).

Thus (IBP) of degree 1 holds with H1(F ) = F .



The fundamental Malliavin’s lemma (1978)

µ is a finite measure on Rn. Assume that ∀ϕ ∈ C∞b (Rn),∣∣∣∣∫
Rn

∂iϕdµ

∣∣∣∣ ≤ ci‖ϕ‖∞, 1 ≤ i ≤ n. (1)

Then µ is a.c., and the density belongs to L
n

n−1 (Rn).

Example: µ law of the random vector F . Condition (1) is

|E ((∂iϕ)(F ))| ≤ ci‖ϕ‖∞, 1 ≤ i ≤ n.

Remark: The IBP formula for α = (0, . . . ,
(i)

1 , . . . , 0) yields

|E ((∂iϕ)(F ))| = |E (ϕ(F )Hi (F ))| ≤ ‖ϕ‖∞E (|Hi (F )|) ≤ ci‖ϕ‖∞.



The fundamental Malliavin’s lemma (1978)

µ is a finite measure on Rn. Assume that ∀ϕ ∈ C∞b (Rn),∣∣∣∣∫
Rn

∂iϕdµ

∣∣∣∣ ≤ ci‖ϕ‖∞, 1 ≤ i ≤ n. (1)

Then µ is a.c., and the density belongs to L
n

n−1 (Rn).

Example: µ law of the random vector F . Condition (1) is

|E ((∂iϕ)(F ))| ≤ ci‖ϕ‖∞, 1 ≤ i ≤ n.

Remark: The IBP formula for α = (0, . . . ,
(i)

1 , . . . , 0) yields

|E ((∂iϕ)(F ))| = |E (ϕ(F )Hi (F ))| ≤ ‖ϕ‖∞E (|Hi (F )|) ≤ ci‖ϕ‖∞.



The fundamental Malliavin’s lemma (1978)

µ is a finite measure on Rn. Assume that ∀ϕ ∈ C∞b (Rn),∣∣∣∣∫
Rn

∂iϕdµ

∣∣∣∣ ≤ ci‖ϕ‖∞, 1 ≤ i ≤ n. (1)

Then µ is a.c., and the density belongs to L
n

n−1 (Rn).

Example: µ law of the random vector F . Condition (1) is

|E ((∂iϕ)(F ))| ≤ ci‖ϕ‖∞, 1 ≤ i ≤ n.

Remark: The IBP formula for α = (0, . . . ,
(i)

1 , . . . , 0) yields

|E ((∂iϕ)(F ))| = |E (ϕ(F )Hi (F ))| ≤ ‖ϕ‖∞E (|Hi (F )|) ≤ ci‖ϕ‖∞.



Stochastic Calculus of Variations (Malliavin Calculus) consists, in
brief, in constructing and exploiting natural differentiable
structures on abstract probability spaces.



Densities of diffusion processes and SPDEs



The fundamental example: Brownian motion

{Bt = (B1
t , . . . ,B

n
t ), t ≥ 0} Gaussian

I E (B i
t) = 0,

I E (B i
tB

j
s) = δji min(s, t).

The density of Bt , t > 0, is

pt(y) = (2πt)−
d
2 exp

(
−|y |

2

2t

)
,

and satisfies the heat equation{
∂pt(y)
∂t = 1

2 ∆pt(y),

p0(t) = δ0,

where ∆ =
∑n

i=1 ∂
2
i .



Diffusion processes

A diffusion is a continuous process {Xt = (X 1
t , . . . ,X

n
t ), t ≥ 0}

satisfying

E
[
X i
t+h − X i

t |Xs , 0 ≤ s ≤ t
]

= bi (Xt)h + o(h),

E
[(

X i
t+h − X i

t − bi (Xt)h
) (

X j
t+h − X i

t − bj(Xt)h
)]

= aij(Xt)h + o(h),

h > 0, with smooth real functions bi , aij .

Fact: X is a Markov process with transition density function

P{Xu+t ∈ dy |Xs , 0 ≤ s ≤ u,Xu = x} = px
t (y)dy .

(Kolmogorov, 1931, Feller, . . .)



Kolmogorov’s equations

Notation

(Lf )(x) =
1

2

∑
i ,j

aij(x)∂i∂j f (x) +
∑
i

bi (x)∂i f (x),

(L∗f )(x) =
1

2

∑
i ,j

∂i∂j [a
ij(x)f (x)]−

∑
i

∂i [b
i (x)f (x)].

Forward equation: ∂
∂t px

t (y) = L∗px
t (y), y ∈ Rn fixed.

Backward equation: ∂
∂t px

t (y) = Lpx
t (y), x ∈ Rn fixed.

Initial condition: px
0 (y) = δx .



Diffusion processes and Itô’s equation (Itô, 1946)

I σ : Rn −→ Rn ⊗ Rd , b : Rn −→ Rn, Lipschitz continuous,
linear growth,

I {Bt , t ≥ 0} d-dimensional Brownian motion.

The stochastic differential equation on Rn{
dX x

t = σ(X x
t )dBt + b(X x

t )dt,

X x
0 = x ,

has a unique solution.
{X x

t , t ≥ 0} is a diffusion process with a = σσt .



Kolmogorov’s equation for the law of X x
t

• Itô formula, f ∈ C∞K ((0,∞)× Rn)

f (t,X x
t ) = f (0, x) +

∫ t

0

[
∂

∂s
+ L

]
(f (s,X x

s ))ds + martingale.

• Take expectations

E

(∫ ∞
0

[
∂

∂s
+ L

]
(f (s,X x

s ))ds

)
= 0. (2)

• Introduce a distribution

α(g) := E

(∫ ∞
0

g(s,X x
s )ds

)
=

∫ ∞
0

∫
Rn

g(s, y)P(X x
s ∈ dy)ds.



Then (2) reads

α

(
∂

∂t
+ L

)
= 0⇔

(
− ∂

∂t
+ L∗

)
α = 0.

If
(
− ∂
∂t + L∗

)
is hypoelliptic, then α is a smooth function on

(0,∞)× Rn:

α(f ) =

∫ ∞
0

∫
Rn

f (s, y)px
s (y)dsdy .

and
∂px

∂t
= L∗px .



Hörmander’s theorem

I σji , b
i ∈ C∞b .

I Define vector fields

Aj = σij∂i , j = 1, . . . , n,

A0 = b − 1

2

d∑
l=1

A∇l Al , A∇l Ak = Aj
l∂jA

i
k∂i ,

[Aj ,Ak ] = A∇j Ak − A∇k Aj .

Theorem At each point x ∈ Rn, the vector space spanned by

A1, . . . ,Ad , [Ai ,Aj ], 0 ≤ i , j ≤ d , [Ai , [Aj ,Ak ]], 0 ≤ i , j , k ≤ d , . . . ,

is Rn. Then
(
∂
∂t − L

∗) is hypoelliptic.



Malliavin Calculus in a Nutshell



Malliavin’s project

Under Hörmander’s assumptions, to prove an IBP formula:

E ((∂αϕ)(X x
t )) = E (ϕ(X x

t )Hα(X x
t )),

t > 0.

In other words, to give an entirely probabilistic proof of
Hörmander’s theorem.



Warming up: the Finite Dimensional Case
Let

µm(dx) = (2π)−
m
2 exp

(
− |x |

2

2

)
dx .

On the probability space (Rm,B(Rm), µm), consider the (smooth)
random vector F : Rm → Rn.
Find an IBP formula for F : E ((∂iϕ)(F )) = · · · .
By the chain rule,〈

∇
(
ϕ(F (x)

)
,∇F l(x)

〉
=
(
A(x)(∇Tϕ)(F (x))

)
l
,

l = 1, · · · , n, where A(x) =
(
〈∇F i (x),∇F j(x)〉

)
1≤i ,j≤n.

Linear system for (∂iϕ)(F ).



If the matrix A(x) is inversible, one gets

(∂iϕ)(F (x)) =
n∑

l=1

〈
∇
(
ϕ(F (x))

)
,A−1

il (x)∇F l(x)
〉
, i = 1, . . . , n.

By taking expectations (integration wrt µm)

Em

(
(∂iϕ)(F )

)
=

n∑
l=1

Em〈∇
(
ϕ(F )

)
,A−1

il ∇F l〉

=
n∑

l=1

Em

(
ϕ(F )δm(A−1

il ∇F l)
)
, δm adjoint of ∇,

= Em

(
ϕ(F )Hi (F , 1)

)
,

with

Hi (F , 1) =
n∑

l=1

δm(A−1
il ∇F l).



Main ingredients and assumptions

I Gradient operator ∇,

I F sufficiently smooth in terms of ∇,

I Gradient covariance matrix A(x),

I A(x) is inversible,

I Adjoint of ∇, δm: Em〈∇f , ϕ〉 = Em(f δmϕ).



Back to Malliavin’s description

Stochastic Calculus of Variations (Malliavin Calculus) consists, in
brief, in constructing and exploiting natural differentiable
structures on abstract probability spaces; in other words,
Stochastic Calculus of Variations proceeds from a merging of
differential calculus and probability theory.



From finite to infinite dimensions

Infinite dimensional analogue of (Rm,B(Rm), µm) (Gross, 1965):

Abstract Wiener Space (W,G,H, µ), where

I W = C([0,T ];Rd),

I G = B(C([0,T ];Rd)),

I µ law of Brownian motion,

I H ⊂ W, i : H →W is continuous, i(H) is dense in W
(Cameron-Martin space).

H =

{
h : [0,T ]→ Rd , hi (t) =

∫ t

0
ḣi (s)ds,

∫ T

0
|ḣ(s)|2 <∞

}
.



Main ingredients

I Malliavin derivative D (∇)

I Sobolev type spaces defined using D: Dk,p

I Malliavin matrix 〈DF i ,DF j〉H : (A)

I Inversibility of the Malliavin matrix

I Adjoint of D (Skorohod integral δ): E (〈Df , u〉H) = E (F δ(u)),
(δm)

... And the associated calculus.



The derivative operator

B(h) =
∫ T

0 h(s)dBs , h ∈ H, Gaussian r.v.

Smooth functionals

F = f
(
B(h1), . . . ,B(hn)

)
,

f ∈ C∞p (Rn), h1, . . . , hn ∈ H, n ≥ 1.

For F ∈ S, define

DF =
n∑

i=1

∂i f
(
B(h1), . . . ,B(hn)

)
hi .

This is a H-valued random variable.



Extension

D is closable as an operator from Lp(Ω) to Lp(Ω; H), for any
p ≥ 1. That is, if

I {Fn, n ≥ 1} ⊂ S, Fn
Lp(Ω)−→ 0,

I {DFn, n ≥ 1} Lp(Ω;H)−→ G ,

then G = 0.

Let D1,p be the closure of the set S with respect to the seminorm

||F ||1,p =
(
E (|F |p) + E (||DF ||pH)

) 1
p .

D1,p is the domain of the operator D in Lp(Ω).



Other approaches

I Ornstein-Uhlenbeck operator (Malliavin)

I 〈DF , h〉H directional derivative in H (Bismut)

I Wiener chaos decomposition (Meyer)



Contributors
Malliavin, Bismut, Stroock, Ikeda, Watanabe, Bouleau, Hirsch,
Meyer, Kusuoka, Shigekawa, Nualart, Bell, Mohammed, Ocone,
Zakai, . . .



Where is Malliavin Calculus useful?

In the analysis of densities of functionals of Gaussian processes

Examples of such functionals

I {X x
t , t ≥ 0}, solution to the Itô equation.

I Maximum of Gaussian continuous processes.

I Stochastic differential and partial differential equations.

Problems

I Existence of density and its properties, strict positivity, etc.

I Upper and lower bounds of Gaussian type.

I Analysis of the effect of perturbations of the Gaussian process.

I . . .



Applications

I Anticipating stochastic calculus. Stochastic calculus with
respect to (rough) Gaussian processes (Zakai, Nualart,
Pardoux, Tindel, fractional Brownian motion community, ...)

I Mathematical finance: computation of price sensitivities
(Greeks) (Kusuoka–Ninomiya, Fournié-Lasry-Lebuchoux-Lions,
Kohatsu-Higa, Malliavin and co-authors,...)

I Probabilistic potential theory for non-Markovian
processes (R. Dalang, D. Khosnevishan, M. S.-S, Y. Xiao,
. . .)

I . . .



Hitting Probabilities



Introduction

{v(x), x ∈ Rm} is a Rd -valued random field defined on a
probability space (Ω,G,P)

v : Ω× Rm → Rd .

Question
How many sample paths of v(ω) visit a deterministic set A?

Prove upper and lower bounds for the hitting probabilities

P{v(Q) ∩ A 6= ∅} := P{ω : v(ω)(Q) ∩ A 6= ∅}

in terms of the capacity or the Hausdorff measure of A.



Factors

I Regularity (or roughness) of the sample paths v(ω).

I Size and geometry of A.

I The dimensions m and d .

Figure : sample paths of a 2-d Brownian motion



Retated problems

I Characterization of the polar sets A:

P{v(Q) ∩ A 6= ∅} = 0.

Maximal solutions of elliptic equations.

I Hausdorff dimension (a.s.) of v(Q) := {v(z), z ∈ Q}.
I Study of level sets L(u; z) = {y ∈ Rm : u(y) = z},

· · · ≤ P{L(u; z) ∩ E 6= ∅} ≤ · · ·

E ⊂ Rm.

I · · ·



Bessel-Riesz capacity

For β ∈ R, E ∈ B(Rd),

Capβ(E ) =
[
infµ∈P(E) Iβ(µ)

]−1
.

Energy

Iβ(µ) =

∫
E

∫
E

Kβ(‖x − y‖)µ(dx)µ(dy),

µ probability on E .
Bessel-Riesz kernel

Kβ(r) =


r−β, if β > 0,

log+

(
1
r

)
, if β = 0,

1, if β < 0.



Hausdorff measure

For β ∈ [0,∞[, E ∈ B(Rd):

Hβ(E ) = limε→0+ inf
{∑∞

i=1(2ri )
β : E ⊂ ∪∞i=1Bri (xi ), supi≥1 ri ≤ ε

}
.

For β ∈]−∞, 0[, E ∈ B(Rd), Hβ(E ) =∞.

A useful fact relating capacities and Hausdorff measures

For β1 > β2 > 0 and compact E ,

Capβ1
(E ) > 0 =⇒ Hβ1(E ) > 0 =⇒ Capβ2

(E ) > 0

(Frostman’s theorem).
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Hitting probabilities for the Brownian motion

Theorem (Kakutani, 1944) For a d-dim Brownian motion B:

cCapd−2(A) ≤ P(B(R+) ∩ A 6= ∅) ≤ c̄Capd−2(A).

In particular, for x 6= 0,

P(∃t : B(t) = x) > 0⇐⇒ d = 1.

Indeed,

Capβ({x}) =

{
1, β < 0,

0, β ≥ 0.
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Hitting probabilities for solutions to SPDEs

A class of SPDEs

Lu(t, x) = b(u(t, x)) + σ(u(t, x))Ẇ (t, x)︸ ︷︷ ︸
random forcing

,

t > 0, x ∈ Rk .
Examples

I L = ∂
∂t −∆ (heat);

I L = ∂2

∂t2 −∆ (waves);

I L = −∆ (Laplace);

with suitable initial conditions.



Digression on radomness
Analysis of physical models at different levels

I Microscopic. Systems of particles are random (quantum
effects, multiple collisions, . . .). Re-scale the system and pass
to the limit.

I Macroscopic. Scaling corresponding to the law of large
numbers. Randomness averages: PDEs or ODEs.

I Mesoscopic. Scaling corresponding to the central limit
theorem. Microscopic random effects average out enough to
be tractable, but do not disappear completely. The passage to
the limit from microscopic to mesoscopic level leads to SPDEs
or SDEs.



Rigorous formulation of the SPDE

u(t, x) = I0(t, x) +

∫ t

0
ds [G (x , ·) ∗ b(u(t − s, ·))] (x)

+

∫ t

0

∫
Rk

G (t − s, x − y)σ(u(s, y))W (ds, dy).



Back to hitting probabilities

An obvious remark
Having information on the densities of u(t, x) could be useful in
the study of the hitting probabilities

P{u(Q) ∩ A 6= ∅},

Q ⊂ R+ × Rk .

Two levels of difficulty

I σ constant: additive noise.

I σ non constant: multiplicative noise.



A drastic simplification

I Initial condition contribution I0 ≡ 0.

I b ≡ 0, σ ≡ 1.

The solution to the SPDE is a Gaussian process:

u(t, x) =
∫ t

0

∫
Rk G (t − s, x − y)W (ds, dy).



Some examples of fundamental solutions
For the heat equation

G (t, x) = (4πt)−
k
2 exp

(
−|x |

2

4t

)
.

For the wave equation

k = 1 G (t, x) =
1

2
1{|x |<t},

k = 2 G (t, x) =
1

2π
(t2 − |x |2)

− 1
2

+ ,

k = 3 G (t, dx) =
1

4πt
σt(dx).



Criteria for hitting probabilities
Dalang, S.-S., 2010



Sufficient conditions for the lower bound

Let {v(w),w ∈ Rm} be a d-dimensional random field
Assume:

1. ∀w1,w2 ∈ Rm, w1 6= w2, (v(w1), v(w2)) has a density pw1,w2 ,
and there exist γ, α ∈]0,∞[ such that

pw1,w2(z1, z2) ≤ C
1

‖w1 − w2‖γ
exp

(
− ‖z1 − z2‖2

‖w1 − w2‖α

)
,

∀z1, z2 ∈ Rd .

2. The density pw of v(w) satisfies pw (z) > 0.

Then,

P{v(Q) ∩ A 6= ∅} ≥ cCap 1
α

(γ−m)(A).
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Sufficient conditions for the upper bound

D ⊂ Rd is fixed. Assume:

1. ∀w ∈ Rm, v(w) has a density pw , and
supw∈Q,z∈D pw (z) ≤ C .
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A sample of results



Stochastic heat equation

I k = 1, σ ≡ 1, b ≡ 0, space-time white noise

c−1Capd−6(A) ≤ P{u(I × J) ∩ A 6= ∅} ≤ cHd−6(A).

I k = 1 space-time white noise

c−1Capd−6+η(A) ≤ P{u(I × J) ∩ A 6= ∅} ≤ cHd−6−η(A).

I k ≥ 1, noise white in time and correlated in space

(R. Dalang, D. Khoshnevishan, E. Nualart, 2007-2013)



Stochastic wave equation

I k ≥ 1, σ ≡ 1, b ≡ 0, noise white in time and correlated in
space (R. Dalang–S.-S, 2010)

c1Cap
d− 2(k+1)

2−β

(A) ≤ P{u(I × J) ∩ A 6= ∅} ≤ c2Hd− 2(k+1)
2−β

(A).

I k ∈ {1, 2, 3}, noise white in time and correlated in space (R.
Dalang–S.-S, 2015)

I ⊂ [0,T ], J ⊂ Rk , A ⊂ [−N,N]d .

Stochastic Poisson equation
Fresh results!



New questions in Malliavin calculus

A difficult step in the proofs:

pw1,w2(z1, z2) ≤ C
1

‖w1 − w2‖γ
exp

(
− ‖z1 − z2‖2

‖w1 − w2‖α

)
. (3)

Comparing with Gaussian densities

‖w1 − w2‖γ related to the det of the cov matrix.

Remark: the Malliavin matrix A = (〈DXi ,DXj〉H)1≤i ,j≤m plays the
rôle of the covariance matrix in the non-Gaussian case.

Obtaining (3) requires the study of the rate of degeneracy of the
random smallest eigenvalue of A when X collapses to a constant.



Final Remarks

I Densities of Gaussian functionals can be obtained by the way
of IBP formulas

I Malliavin calculus is a theory tailored to prove IBP formulas.

I The initial motivation for developing Malliavin calculus was to
give a probabilistic proof of Hörmander’s theorem on
hypoelliptic operators. However, the theory went far beyond
its initial objective.

I As usually, there is a two-way interaction: Malliavin calculus is
used to approach new problems, and new problems raise new
questions in the theory.

Altogether, a nice blend of ideas and techniques from different
mathematical fields.



Muchas Gracias!!


