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1. Continuous transforms. 1.1. Fourier transform.

• The Fourier transform, F(f )(ξ) =
∫∞
−∞ f (x)e−2πixξdx , of two

different signals may be similar.
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1.2. Short time window transform.

• Given a window function g, such as g(x) = χ[0,1](x) or
g(x) = 1√

10
e−10x2

, the Short time window transform is

Sg(f )(t , ξ) =
∫ ∞
−∞

f (x)g(x − t)e−2πixξdx .

Eugenio Hernández Wavelets



1.3. Continuous wavelet transform.

• Given a function ψ the continuous wavelet transform is

Wψ(f )(t , s) =
∫ ∞
−∞

f (x)
√

sψ(sx − t)dx .

The function used by Morlet is a modulated gaussian
ψ(x) = π−1/4e−iw0xe−x2/2. Another example is the Mexican hat

function ψ =
2√
3
π−1/4(1− x2)e−x2/2.

Eugenio Hernández Wavelets



1.4. Continuous wavelet transform.
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2. Discrete wavelet transform.
2.1. Haar wavelet transform in 1-D.

• Signal x = [200,200,200,210,40,80,100,102]T and its gray
scale representation:

• First approximation: [200,205,60,101]T . This vector is not
enough to determine x.

• Directed differences: [200,205,60,101|0,5,20,1]T .

• Second approximation: [203,81|2,20|0,5,20,1]T .

• Quantizing: [203,81|0,20|0,0,20,0]T .
• Huffman encoding (0↔ 0;20↔ 10;81↔ 110;203↔ 111):
111110010001000 ( 15 bits instead of 64 bits: compression of
75.76%)

• Signal recovered from quantize version:
[203,203,203,203,41,81,101,101]T .
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2.2. Haar wavelet transform in 1-D.

• For a signal x = [x1, x2, . . . , xN ]
T , N even: for k = 1, . . . ,N/2,

x −→
[

a
d

]
, ak =

x2k−1 + x2k

2
, dk =

−x2k−1 + x2k

2
.

• Matrix interpretation for x = [x1, x2, x3, x4]
T

W̃4x =


1/2 1/2 0 0
0 0 1/2 1/2
− − − −
−1/2 1/2 0 0

0 0 −1/2 1/2




x1
x2
x3
x4

 =


a1
a2
−
d1
d2

 =

[
a
d

]
.

• Matrix interpretation for x = [x1, x2, . . . , xN ]
T :

W̃Nx =

[
H̃N/2

G̃N/2

]
x =

[
a
d

]
.
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2.3. Inverse Haar wavelet transform in 1-D.

• Since x2k−1 = ak − dk and x2k = ak + dk the matrix W̃N can
be inverted.

• For N = 4,

(W̃4)
−1
[

a
d

]
=


1 0 | −1 0
1 0 | 1 0
0 1 | 0 −1
0 1 | 0 1




a1
a2
−
d1
d2

 =


x1
x2
x3
x4

 .

• The inverse Haar wavelet transform in 1-D is given by:

x = 2W̃N
T
[

a
d

]
= 2

[
H̃T

N/2 | G̃T
N/2

] [ a
d

]
• The matrix WN =

√
2W̃N is orthogonal
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2.4. Haar wavelet transform in 2-D.

• A is an image of size M × N, M and N both even.

• Apply WM (1-D) to the columns of A: compute WMA.

• Apply WN (1-D) to the rows of WMA: compute WMAW T
N .
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2.4. Haar wavelet transform in 2-D.

• Block multiplication:

WMAW T
N =

[
HM/2

GM/2

]
A
[

HT
N/2 | GT

N/2

]

=

[
HM/2A
GM/2A

] [
HT

N/2 | GT
N/2

]

=

[
HM/2AHT

N/2 | HM/2AGT
N/2

GM/2AHT
N/2 | GM/2AGT

N/2

]
=

[
B | V
H | D

]
• This process can be iterated with the blur image.
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2.4. Haar wavelet transform in 2-D.

• Decomposition and reconstruction of an image with 2-D Haar
wavelet transform.
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3.1. Convolution, filters, and Fourier series.

• For h and x bi-infinity sequences, their discrete convolution is
a bi-infinite sequence y = h ∗ x whose n-th component, n ∈ Z,
is

yn =
∑
k∈Z

hkxn−k .

• The Haar Wavelet transform of x can be obtained by discrete
convolution: take xn = 0 if n ≤ 0 or n > N.
z Compute u = h ∗ x for h0 =

√
2/2 = h1.

z Compute v = g ∗ x for g0 =
√

2/2, g1 = −
√

2/2.
z Downsample u and v by keeping only the even components
of each vector.
z Truncate the downsample vectors u and v to obtain a and d.

• Vectors h and g are called FILTERS
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3.2. Convolution, filters, and Fourier series.

• For a finite length filter f its Fourier series is the trigonometric
polynomial

F (ξ) =
∑

k

fkeikξ.

• For h = [h0,h1]
T = [

√
2

2
,

√
2

2
]T ,

H(ξ) =

√
2

2
+

√
2

2
eiξ =

√
2eiξ/2 cos(ξ/2)

is a LOWPASS FILTER.

• For g = [g0,g1]
T = [

√
2

2
,−
√

2
2

]T ,

G(ξ) =

√
2

2
−
√

2
2

eiξ = −
√

2ieiξ/2 sin(ξ/2)

is a HIGHPASS FILTER.
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3.3. Convolution, filters, and Fourier series.

• The lowpass and highpass filters have the following
properties:

(1)
i) |H(0)| =

√
2 ii) |H(π)| = 0 .

(2)
|H(ξ)|2 + |H(ξ + π)|2 = 2.

(3)
i) |G(0)| = 0 ii) |G(π)| =

√
2 .

(4)
|G(ξ)|2 + |G(ξ + π)|2 = 2.

(5)
H(ξ)G(ξ) + H(ξ + π)G(ξ + π) = 0.
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4.1. Daubechies orthogonal wavelet transform.

•When applying Haar Wavelet Transform to
v = [2,2,200,200]T one gets

√
2[0,200|0,0]T , and the

singularity between 2 and 200 is not detected. This is because
the Haar filter is too short.

• I. Daubechies idea is to use longer finite filters
h = [h0,h1,h2,h3]

T , g = [g0,g1,g2,g3]
T with the following

matrix orthogonal:

W8 =



h3 h2 h1 h0 0 0 0 0
0 0 h3 h2 h1 h0 0 0
0 0 0 0 h3 h2 h1 h0
h1 h0 0 0 0 0 h3 h2
− − − − − − − −
g3 g2 g1 g0 0 0 0 0
0 0 g3 g2 g1 g0 0 0
0 0 0 0 g3 g2 g1 g0
g1 g0 0 0 0 0 g3 g2


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4.2. Daubechies orthogonal wavelet transform.

• Since W8 has to be orthogonal:

(6) h2
0 + h2

1 + h2
2 + h2

3 = 1 , (7) h0h2 + h1h3 = 0 .

• From H(π) = 0, (8) h0 − h1 + h2 − h3 = 0 .

• The system of equations (6), (7), and (8) have infinitely many
solutions.

• I. Daubechies idea was to make H more flat at π by imposing
H ′(π) = 0. The new equation is:

(9)h1 − 2h2 + 3h3 = 0.

• The four equations (6), (7), (8), and (9) have two solutions.
One of them is:

h0 =
1 +
√

3
4
√

2
, h1 =

3 +
√

3
4
√

2
, h2 =

3−
√

3
4
√

2
, h3 =

1−
√

3
4
√

2
.

• Clever choice: g = [h3,−h2,h1,−h0]
T .
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4.3. Daubechies orthogonal wavelet transform.

• Construction of longer even-length filters h = [h0, . . . ,hL]
T ,L

odd, that produce WN orthogonal matrix.

I. DAUBECHIES

• Let H(ξ) =
∑

k hkeikξ and G(ξ) =
∑

k gkeikξ. Then,

(A) |H(ξ)|2 + |H(ξ + π)|2 = 2 ⇔
∑

k

hkhk−2n = δ0,n , n ∈ Z.

• Also (B)

H(ξ)G(ξ) +H(ξ+ π)G(ξ + π) = 0 ⇔
∑

k

hkgk−2n = 0 , n ∈ Z.
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4.4. Daubechies orthogonal wavelet transform.

S. MALLAT

• Suppose H(ξ) satisfies (A). Then

G(ξ) = −eiLξH(ξ + π)

satisfies (A).
• Moreover H(ξ) and G(ξ) satisfy (B).

I. DAUBECHIES

• Assume H(m)(π) = 0,m = 0,1, . . . ,
L− 1

2
.

• There are M = 2b
L+2

4 c real valued lowpass filters that produce
orthogonal wavelet transforms.
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4.5. Unwanted effects.

• The wrapping of filters in orthonormal wavelet transforms
produces unwanted effects. To see this, apply Daubechies
orthogonal transform W16 to the vector x, where
xk = k , k = 1,2, . . . ,16, with the lowpass filter or length 4
constructed above.

• The last two terms of x are combined with the first two to
produce the last weighted average and difference.
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4.6. Biorthogonal filters for JPEG 2000.

• The condition W−1
N = W T

N is hard to fulfill for filters of length
larger than 4 and produces unwanted effects at borders.

• Construct two set of filters h and h̃ poducing transforms WN

and W̃N such that W̃−1 = W T .

• These will be called biorthogonal filters and they must satisfy:

W̃MW T
N ==

[
H̃N/2

G̃N/2

] [
HT

N/2 | GT
N/2

]

=

 H̃N/2HT
N/2 | H̃N/2GT

N/2

G̃N/2HT
N/2 | G̃N/2GT

N/2

 =

[
IN/2 | 0N/2

0N/2 | IN/2

]
(10)
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4.6. Biorthogonal filters for JPEG 2000.

• Let H(ξ) and H̃(ξ) be the Fourier series of a pair of
biorthogonal filters h and h̃.

• They must be lowpass filters:

(11) H̃(0) = H(0) =
√

2 , H̃(π) = H(π) = 0.

A. COHEN, I. DAUBEHIES, J.C. FEAUVEAU

• A pair of biorthogonal filters must satisfy

(12) H̃(ξ)H(ξ)+ H̃(ξ+π)H(ξ + π) = 2 ⇔
∑
k∈Z

h̃khk−2n = δ0,n .

• Taking G̃(ξ) = −eiξH(ξ + π) ⇔ g̃k = (−1)kh1−k and

G(ξ) = −eiξH̃(ξ + π) ⇔ gk = (−1)k h̃1−k , equality (10) holds.
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4.6. Biorthogonal filters for JPEG 2000.

• Start with h̃ = [h−1,h0,h1]
T =

√
2

4
[1,2,1]T , symmetric of

length 3.

• h̃ satisfies H̃(ξ) =

√
2

4
(e−iξ + 2 + eiξ) =

√
2

2
(1 + cos ξ). Thus,

H̃(0) =
√

2 H̃(π) = 0.

• Find h = [h2,h1,h0,h1,h2] (symmetric of length 5) such that
(11) and (12) hold.
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4.6. Biorthogonal filters for JPEG 2000.

• This is equivalent to the following linear system:
h0 − 2h1 + 2h2 = 0
h0 + h1 =

√
2

h1 + 2h2 = 0

 .

• Solution: h2 = −
√

2
8
, h1 =

√
2

4
, h0 =

3
√

2
4

.

• This is CDF(5,3) filter similar to the ones used in JPEG2000.

JPEG2000
A modify version of CDF(5,3) that takes integers to integers is
used for lowless compression and a CDF(9,7) is used for lossy
compression in JPEG2000.
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4.7. CDF (5,3) biorthogonal wavelet transform

W8 =

√
2

8



3 2 −1 0 0 0 −1 2
−1 2 3 2 −1 0 0 0
0 0 −1 2 3 2 −1 0
−1 0 0 0 −1 2 3 2
2 −4 2 0 0 0 0 0
0 0 2 −4 2 0 0 0
0 0 0 0 2 −4 2 0
2 0 0 0 0 0 2 −4



W̃8 =

√
2

8



4 2 0 0 0 0 0 2
0 2 4 2 0 0 0 0
0 0 0 2 4 2 0 0
0 0 0 0 0 2 4 2
2 −3 2 1 0 0 0 1
0 1 2 −3 2 1 0 0
0 0 0 1 2 −3 2 1
2 1 0 0 0 1 2 −3


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