Fecha: 27/03/2017 16:00
Fecha de Finalización: 30/03/2017
Lugar: Aula 133/134, Facultad de Ciencias
Grupo: G.I.R. Probabilidad y Estadística Matemática
Abstract:
The course will cover the following topics:
(1) Learning features: A structured model.
Introduction to clustering and features extraction. Learning a model using regression and logit regression. Sparsity in high dimension.
(2) Automatic representation learning with NonNegative Matrix Implementation. Matrix factorization and SVD methods. NMF. Completion using NMF and recommendation.
(3) Using spark, hadoop. Principle of map reduce. Divide and conquer method. Stochastic gradient optimization.
(4) Application to movie lens recommendation. Admission is limited to 24 students (contact: tasio@eio.uva.es)